Halley’s Comet in 1986

Halley’s Comet or Comet Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–76 years. Halley last appeared in the inner parts of the Solar System in 1986 and will next appear in mid-2061.

Halley’s returns to the inner Solar System have been observed and recorded by astronomers since at least 240 BC. Clear records of the comet’s appearances were made by Chinese, Babylonian, and medieval European chroniclers, but were not recognized as reappearances of the same object at the time. The comet’s periodicity was first determined in 1705 by English astronomer Edmond Halley, after whom it is now named.

During its 1986 apparition, Halley’s Comet became the first comet to be observed in detail by spacecraft, providing the first observational data on the structure of a comet nucleus and the mechanism of coma and tail formation. These observations supported a number of longstanding hypotheses about comet construction, particularly Fred Whipple’s “dirty snowball” model, which correctly predicted that Halley would be composed of a mixture of volatile ices—such as water, carbon dioxide, and ammonia—and dust. The missions also provided data that substantially reformed and reconfigured these ideas; for instance, it is now understood that the surface of Halley is largely composed of dusty, non-volatile materials, and that only a small portion of it is icy.

Comet Halley is commonly pronounced /ˈhæli/, rhyming with valley, or /ˈhli/, rhyming with daily. Colin Ronan, one of Edmond Halley’s biographers, preferred /ˈhɔːli/ (HAW-lee, similar to holly). Spellings of Halley’s name during his lifetime included Hailey, Haley, Hayley, Halley, Hawley, and Hawly, so its contemporary pronunciation is uncertain, but contemporary individuals with this last name appear to prefer the version that rhymes with “valley”.

Halley was the first comet to be recognized as periodic. Until the Renaissance, the philosophical consensus on the nature of comets, promoted by Aristotle, was that they were disturbances in Earth’s atmosphere. This idea was disproved in 1577 by Tycho Brahe, who used parallax measurements to show that comets must lie beyond the Moon. Many were still unconvinced that comets orbited the Sun, and assumed instead that they must follow straight paths through the Solar System.

In 1687, Sir Isaac Newton published his Philosophiæ Naturalis Principia Mathematica, in which he outlined his laws of gravity and motion. His work on comets was decidedly incomplete. Although he had suspected that two comets that had appeared in succession in 1680 and 1681 were the same comet before and after passing behind the Sun (he was later found to be correct; see Newton’s Comet), he was unable to completely reconcile comets into his model.

Ultimately, it was Newton’s friend, editor and publisher, Edmond Halley, who, in his 1705 Synopsis of the Astronomy of Comets, used Newton’s new laws to calculate the gravitational effects of Jupiter and Saturn on cometary orbits. Having compiled a list of 24 comet observations, he calculated that the orbital elements of a second comet that had appeared in 1682 were nearly the same as those of two comets that had appeared in 1531 (observed by Petrus Apianus) and 1607 (observed by Johannes Kepler). Halley thus concluded that all three comets were, in fact, the same object returning about every 76 years, a period that has since been found to vary between 74–79 years. After a rough estimate of the perturbations the comet would sustain from the gravitational attraction of the planets, he predicted its return for 1758. While he had personally observed the comet around perihelion in September 1682, Halley died in 1742 before he could observe its predicted return.


Halley’s prediction of the comet’s return proved to be correct, although it was not seen until 25 December 1758, by Johann Georg Palitzsch, a German farmer and amateur astronomer. It did not pass through its perihelion until 13 March 1759, the attraction of Jupiter and Saturn having caused a retardation of 618 days. This effect was computed prior to its return (with a one-month error to 13 April) by a team of three French mathematicians, Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute. The confirmation of the comet’s return was the first time anything other than planets had been shown to orbit the Sun. It was also one of the earliest successful tests of Newtonian physics, and a clear demonstration of its explanatory power. The comet was first named in Halley’s honour by French astronomer Nicolas-Louis de Lacaille in 1759.

Some scholars have proposed that first-century Mesopotamian astronomers already had recognized Halley’s Comet as periodic. This theory notes a passage in the Bavli Talmud that refers to “a star which appears once in seventy years that makes the captains of the ships err.”

Researchers in 1981 attempting to calculate the past orbits of Halley by numerical integration starting from accurate observations in the seventeenth and eighteenth centuries could not produce accurate results further back than 837 due to a close approach to Earth in that year. It was necessary to use ancient Chinese comet observations to constrain their calculations.

Halley’s orbital period has varied between 74–79 years since 240 BC.Its orbit around the Sun is highly elliptical, with an orbital eccentricity of 0.967 (with 0 being a circle and 1 being a parabolic trajectory). The perihelion, the point in the comet’s orbit when it is nearest the Sun, is just 0.6 AU. This is between the orbits of Mercury and Venus. Its aphelion, or farthest distance from the Sun, is 35 AU (roughly the distance of Pluto). Unusual for an object in the Solar System, Halley’s orbit is retrograde; it orbits the Sun in the opposite direction to the planets, or, clockwise from above the Sun’s north pole. The orbit is inclined by 18° to the ecliptic, with much of it lying south of the ecliptic. (Because it is retrograde, the true inclination is 162°.) Due to the retrograde orbit, it has one of the highest velocities relative to the Earth of any object in the Solar System. The 1910 passage was at a relative velocity of 70.56 km/s (157,838 mph or 254,016 km/h). Because its orbit comes close to Earth’s in two places, Halley is associated with two meteor showers: the Eta Aquariids in early May, and the Orionids in late October. Halley is the parent body to the Orionids. Observations conducted around the time of Halley’s appearance in 1986 suggested that the comet could additionally perturb the Eta Aquariids meteor shower, although it might not be the parent of that shower.

Halley’s 1986 apparition was the least favourable on record. The comet and Earth were on opposite sides of the Sun in February 1986, creating the worst viewing circumstances for Earth observers for the last 2,000 years. Halley’s closest approach was 0.42 AU. Additionally, with increased light pollution from urbanization, many people failed to even see the comet. It was possible to observe it in areas outside of cities with the help of binoculars. Further, the comet appeared brightest when it was almost invisible from the northern hemisphere in March and April. Halley’s approach was first detected by astronomers David Jewitt and G. Edward Danielson on 16 October 1982 using the 5.1 m Hale telescope at Mount Palomar and a CCD camera. The first person to visually observe the comet on its 1986 return was amateur astronomer Stephen James O’Meara on 24 January 1985. O’Meara used a home-built 24-inch telescope on top of Mauna Kea to detect the magnitude 19.6 comet. On 8 November 1985, Stephen Edberg (then serving as the Coordinator for Amateur Observations at NASA’s Jet Propulsion Laboratory) and Charles Morris were the first to observe Halley’s Comet with the naked eye in its 1986 apparition.

Although Halley’s Comet’s retrograde orbit and high inclination make it difficult to send a space probe to it, the 1986 apparition gave scientists the opportunity to closely study the comet, and several probes were launched to do so. The Soviet Vega 1 started returning images of Halley on 4 March 1986, and the first ever of its nucleus, and made its flyby on 6 March, followed by Vega 2 making its flyby on 9 March. On 14 March, the Giotto space probe, launched by the European Space Agency, made the closest pass of the comet’s nucleus. There were also two Japanese probes, Suisei and Sakigake. The probes were unofficially known as the Halley Armada.

Based on data retrieved by Astron, the largest ultraviolet space telescope of the time, during its Halley’s Comet observations in December 1985, a group of Soviet scientists developed a model of the comet’s coma. The comet was also observed from space by the International Cometary Explorer (ICE). Originally International Sun-Earth Explorer 3, the probe was renamed and freed from its L1 Lagrangian point location in Earth’s orbit to intercept comets 21P/Giacobini-Zinner and Halley. ICE made its closest approach on March 28, 1986.

Two Space Shuttle missions—the ill-fated STS-51-L (ended by the Challenger disaster) and STS-61-E—were scheduled to observe Halley’s Comet from low Earth orbit. STS-51-L carried the Shuttle-Pointed Tool for Astronomy (SPARTAN-203) satellite, also called the Halley’s Comet Experiment Deployable (HCED). STS-61-E was a Columbia mission scheduled for March 1986, carrying the ASTRO-1 platform to study the comet. Due to the suspension of America’s manned space program after the Challenger explosion, the mission was canceled, and ASTRO-1 would not fly until late 1990 on STS-35.

On 12 February 1991, at a distance of 14.4 AU (2.15×109 km) from the Sun, Halley displayed an outburst that lasted for several months, releasing a cloud of dust 300,000 km across. The outburst likely started in December 1990, and then the comet brightened from magnitude 24.3 to magnitude 18.9. Halley was most recently observed in 2003 by three of the Very Large Telescopes at Paranal, Chile, when Halley’s magnitude was 28.2. The telescopes observed Halley, at the faintest and farthest any comet has ever been imaged, in order to verify a method for finding very faint trans-Neptunian objects. Astronomers are now able to observe the comet at any point in its orbit.

The next predicted perihelion of Halley’s Comet is 28 July 2061, when it is expected to be better positioned for observation than during the 1985–1986 apparition, as it will be on the same side of the Sun as Earth. It is expected to have an apparent magnitude of −0.3, compared with only +2.1 for the 1986 apparition. It has been calculated that on 9 September 2060, Halley will pass within 0.98 AU (147,000,000 km) of Jupiter, and then on 20 August 2061 will pass within 0.0543 AU (8,120,000 km) of Venus.

Comments are welcome on your 80s memories...

%d bloggers like this: